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Abstract—the number of people designing high-level electronic 
devices from pre-existing building blocks is growing rapidly thanks 
to more accessible prototyping platforms.  Software tools currently 
available for this activity provide little to no assistance in terms of 
automated validation of several important design concerns, 
complicating the adoption of this activity and increasing the error rate 
evidenced in the assembly and testing phases of project development.  
Starting from the success exhibited by architectural description 
languages (ADLs) in supporting automated assistance and validation 
of software architecture, a hypothesis is made that similar techniques 
can help automate and validate specific aspects of electronics design.  
The resulting tooling and its evaluation seem to confirm the 
hypotheses, but there is evidence for the need of more extensive field 
validation and tool implementation improvements.  Several extension 
points are also identified that, if undertaken, may provide additional 
insight into the approach. 

Keywords—adl, metamodeling, emf, gmf, epsilon, electronics 

MOTIVATION  

Low-level electronics design is concerned with developing 
discrete components (“chips”) at the logical gate or transistor 
level.  It is complex and time-consuming, dealing with 
concerns such as concurrency correctness, logical correctness, 
efficiency, and manufacturing cost.  It has very good hardware 
and software support by way of field-programmable grid arrays 
(FPGAs), hardware description languages (HDLs), simulators 
and analysis tools.  Collectively, these tools enable a process 
known as electronic design automation (EDA) [1]. 

High-level electronics design is concerned with composing 
devices out of existing chips and other discrete components.  It 
is complex because the arrangement must ensure 
interoperability and compatibility across several different 
aspects, such as voltage levels, communication protocols, 
availability and type of digital or analog connection points or 
“pins”, electrical power required or provided, cost and volume 
concerns, among others. 

Unlike low-level electronics design, high-level electronics 
design has poor software support.  Typical software for this 
task can help represent the electrical schematic that binds 
components together (in terms of point-to-point connectivity 
only), as well as assist in the mechanical construction of the 
overall design, i.e. printed circuit board tracing and routing.  It 
doesn’t, however, provide higher-level semantic support in 
terms of voltage level compatibility, component polarity 

mismatch detection, semantic compatibility of communication 
or interconnection protocols, among others.   

Mobile computing, the Internet of Things, and the Maker 
movement, among other trends, are driving up the demand for 
ad hoc high-level electronics design, while also opening it up 
to less experienced designers through platforms such as 
Arduino (http://arduino.cc) and Raspberry Pi 
(http://raspberrypi.org).  The mismatched evolution of 
electronics capabilities and battery technology imposes an 
additional strain on designers to optimize their designs for 
constrained power configurations.  And electronic design 
increasingly involves substantial software development, with 
no comprehensive tooling ensuring the proper alignment 
between the software and hardware layers of the system, 
matched up only at the designer’s minds.  These three factors 
compound to exacerbate the lack of proper software support for 
high-level electronic design. 

In the realm of software engineering, architectural 
description languages (ADLs) have a proven track record of 
supporting software architecture and design, especially in the 
embedded/real time domains [2].  They allow modeling a 
software system as a series of discrete components and their 
semantic and concrete connections, and then analyzing the 
ensemble in search of a number of qualities that the design 
must fulfill and constraints it must obey.  In this manner, ADLs 
and their associated toolset can provide substantial assistance 
to software design creation and validation. 

This work sought to validate whether a similar approach 
can support electronic design, by selecting or creating an ADL 
suitable of representing electronic circuits at a sufficiently high 
level of abstraction that, by developing proof-of-concept 
tooling to process said representation, the design can be 
automatically analyzed and validated in order to ensure 
compliance with a series of constraints or design goals, hence 
automating and assisting parts of the design process. 

APPROACH 

The work was undertook in five general stages: 
architectural representation metamodel definition, metamodel 
implementation, specification of design validation and 
assistance tactics, design validation and assistance automation, 
and evaluation of results. 



Using literary review, the research team’s own experiences, 
and consultations with electronic designers, a metamodel was 
designed and documented in order to represent the architecture 
and design of general purpose electronic devices. 

Existing ADLs and similar tools to document and analyze 
electronic designs were evaluated as candidates to use or 
extend to implement the metamodel.  In the end, a custom 
implementation was built using Eclipse’s Modeling 
Framework (EMF) and Graphical Modeling Framework 
(GMF) [3], aided by the Epsilon project tooling [4].  This 
provided a visual editor where instances of the metamodel 
representing electronic designs could be defined and stored for 
further manual or automated processing. 

By discussing with electronic designers, and pondering the 
results of the discussions with the metamodel and tooling 
capabilities and available time and resources, a set of key 
design concern aspects was drafted for which automated 
analysis and assistance would be provided.  The metamodel 
tooling was augmented using Java code in order to implement 
these design concern aspects.  The final tool was then assessed 
by electronic designers for suitability and fitness of use as part 
of ordinary high-level electronic design work. 

The rest of this paper details the relevant decisions and 
findings of each stage of the work. 

METAMODEL DEFINITION 

The first step of the work was to define an architecture-
based integrated electronic design language, henceforth called 
ABDIEL1.  Software architecture nomenclature and guidelines 
as defined by the Software Engineering Institute [5], and the 
metamodeling concepts and guidelines from [6] (particularly 
the “M2/M1” metamodel/concrete model nomenclature), were 
used in the definition process. 

A first distinction is made between types and instances.  In 
general, electronic designs are made of parts, which have pins, 
electrical joints through which parts can be connected to each 
other.  Every such element in a design must first be specified 
before it can be instantiated.  For instance, a toy semaphore 
may be built with three light-emitting diodes (LEDs).  Each 
such diode is a part in the electronic design.  Before the part 
can be used, its type must be specified: the fact that it has two 
pins, one being of positive polarity (the anode) and the other of 
negative polarity (the cathode); the fact that it has a maximum 
forward voltage (a discrete property); the fact that it has a 
maximum forward current; and many other properties such as 
brightness, specific color wavelength, etc.  Once the part and 
pin types have been specified, instances of them can be used in 
a particular design. 

A second classification of metamodel elements is along the 
lines of components and connectors.  Components are discrete 
elements that exhibit externally visible attributes, including 
ports, which define the semantics and protocols through which 
components can be connected.  In order to provide sufficient 

                                                           
1 “ABDIEL” is something of a forced backronym for “Architecture-Based 
Integrated Electronics Design Language”.  “Abdiel” also happens to be the 
name of the eldest son of a friend of the author. 

semantic expressiveness, connectors are modeled as 
independent entities, possessing their own attributes and sub-
components, such as roles and ports.  For both components and 
connectors, the externally visible attributes may be complex 
sub-components, or simply name/value pairs, with values 
optionally ascribing to some typing system. 

The ABDIEL metamodel (M2) is detailed first.  It allows 
libraries, or collections of electronic components, to be 
modeled.  The first basic component type in ABDIEL is the pin 
specification.  A pin specification describes a type of pin, 
which represents an electrical joint that belongs to a part and 
that can be connected to other pins, potentially belonging to 
different parts. 

The second basic ABDIEL component type is the part 
specification.  A part represents a concrete bit of a high-level 
electronic design, whether it is passive (e.g. buttons, resistors) 
or active (e.g. transistors, micro-controllers).  Parts contain 
pins, as well as properties, defined later ahead. 

A third type of ABDIEL component is a port 
specification.  A port is a logical aggregation of pins.  For 
example, the Universal Serial Bus (USB) uses four pins on 
each side of the connection: the power supply pin (Vcc), the 
ground pin, and the symmetric data pins D+ and D-.  In 
ABDIEL, instead of connecting USB parts by connecting four 
pins of one part to the corresponding four pins of the other, a 
single USB port may be declared on each part 
specification.  The port specification defines the port’s 
protocol; connected ports must have matching protocols.  It 
also defines port wirings, which define aggregations of pins 
within the port: each wiring binds a pin specification to the port 
specification, and specifies the alias/external name, or role, the 
pin has in the port.  For instance, an Atmel ATtiny85 
microcontroller part specification may expose an USB port 
specification that aggregates four port wirings, mapping the 
microcontroller’s PWR, GND, PB3 and PB4 pins to USB’s 
Vcc, GND, D+ and D- aliases or roles, respectively.  This 
allows connecting the microcontroller to a USB socket part by 
using a single port connection (defined later).  Note well that 
there is potential for confusion due to semantic overload of the 
term “port” in both the domain model and the metamodel: both 
ports and pins are conceptually ports of the “part” component. 

Before turning to connectors, it must be noted that, in order 
to provide higher-level connection expressiveness, the pin 
component is modeled as a special type of joint.  Another 
special type of joint is a net, a named element to which many 
pins may be connected.  If the circuit contains several nets that 
share the same name, it is assumed they are all connected 
together (this is only a conceptual convention; the metamodel 
itself doesn’t structurally enforce this). 

ABDIEL defines the base wire connector.  A wire connects 
a source joint to a target joint.  The other possible connector is 
the port connection, which defines a connection between a 
source and a target port. 

At the model level (M1), ABDIEL defines a concrete 
circuit as a collection of parts, wires, nets, port wirings and 
port connections, whose types belong to a specific library the 
circuit is based on. 



Finally, ABDIEL allows parts to be annotated with 
properties.  Part specifications include sets of properties, which 
are name/value pairs that can provide additional details of parts 
and which can be used by analysis and assistance automation 
developers to drive the implemented tactic.  For each property 
specified in the part specification, each concrete part of a 
circuit gets a concrete instance of the property in question.  
Property values are subject to a simple type system such that a 
property’s value can be a string, integer, floating number, or 
Boolean value. 

METAMODEL IMPLEMENTATION 

Once the metamodel was defined, several existing tools 
were considered in order to implement it.  Specifically, the 
Architectural Analysis and Design Language (AADL) [7] and 
the EAST-ADL [8] were considered. 

AADL is a mature, well-established ADL for mixed 
hardware/software architectures.  Originally envisioned for 
avionics architecture, it has been extended for embedded 
systems in general.  The author has some experience both using 
AADL and extending AADL-based tools [9].  However, the 
visual tools for recent releases of AADL are rather difficult to 
set up, and are poorly documented.  The ADL itself, while 
covering both hardware and software, does so from a software 
perspective, and does not lend itself well to detailed electronics 
design, with “device” and “port” being the most fine-grained 
electronic component abstractions available. 

EAST-ADL, on the other hand, is an ADL for automotive 
electrical and electronic design.  Its metamodel does include 
detailed enough elements, as part of the “HardwareModeling” 
package within its structural constructs, to enable accurate 
representation of high-level electronic designs, including 
concepts such as hardware pins and pin groups, which maps  
more or less directly to ABDIEL’s pins and ports.  However, 
EAST-ADL is a Unified Modeling Language (UML) profile; 
modeling using this ADL would demand UML proficiency 
from electronic designers, which are more used to modeling 
their circuits after the low-level electrical schematics they map 
to.   There were also no readily available open tools found by 
the author to implement or extend the required ABDIEL 
concepts on top of EAST-ADL in an economical fashion. 

In light of these findings, a custom tool was built using 
EMF and GMF via Epsilon.  A first EMF eCore metamodel is 
built with ABDIEL’s M2 elements.  A concrete (M1) model is 
then created using Eclipse’s generated model editor.  This 
model defines the specifications for parts, ports and pins that 
can be used to model concrete circuits.  The model is then run 
through an Epsilon Transformation Language (ETL) script, 
which generates a new EMF eCore metamodel (called the 
ABDIEL Diagram M2), where some primitive elements are 
programmatically introduced (circuit, joint, pin, net, wire, etc.), 
and a concrete “Part” model element is created for each part 
specification found in the source ABDIEL M1 model, 
extending the abstract “Part” element.  This is needed because 
GMF can only generate visual elements for concrete model 
types; the process therefore allows palette elements to be 
created for each part type in the library model, as well as 
defining concrete properties for each part type based on the 

properties stated in the part’s specification.  In order to create 
and associate part instances with their contained pins and ports 
at runtime, GMF Java initializers are also generated 
automatically when generating the visual GMF editor, by 
augmenting the Epsilon generation process through built-in 
hooks [10].  This makes the generated editor instantiate a part’s 
pins and ports as part of part instantiation, which in turn makes 
the elements visible and properly related when creating a new 
part.  This is akin to having a UML object diagram populate a 
class’ structurally related objects when a new object of said 
class is created in the diagram. 

At the end of this process, a visual editor results that can 
edit, save and open circuit diagram files whose contents derive 
from the ABDIEL M1 library model that was used to generate 
the ABDIEL Diagram M2 metamodel. 

DESIGN VALIDATION AND ASSISTANCE TACTICS SELECTION 

The selection of design validation and assistance tactics to 
be automated was a crucial aspect of the work.  The starting 
point for tactics selection was observing the shortcomings that 
current electronics design tools have to this respect, coupled 
with implementation complexity analysis and resource 
constraints. 

Recalling their state of the art, current electronics design 
tools accommodate low-level electrical schematic modeling of 
circuits.  This modeling is strictly limited to point-to-point 
connectivity, ignoring both electrical and higher-level 
electronic properties that must be manually considered by the 
designer.  This means that, when considering a particular point-
to-point connection, electrical properties of the intervening pins 
such as voltage levels, polarity, intensity and direction of 
electrical current expected to flow through the joint, etc.; and 
electronic properties such as roles (e.g. serial data, clock data), 
operating modes (e.g. signal input or output), digital or analog 
nature, among many others, are ignored by the modeling tool, 
which is therefore incapable of assisting the designer with 
these concerns. 

Based on the division of electrical/electronic properties 
outlined above, several candidate tactics were identified, such 
as voltage level checks between two or more connected pins; 
forward voltage and/or current analysis, to prevent overloading 
or burning parts; substitution analysis, i.e. determine which 
parts can replace others in a given design in order to optimize 
costs or deal with availability issues; automated checking of 
port connections; among many others. 

Beyond the inherent complexity of each candidate tactic, 
some issues applying to the categories as a whole informed the 
decision process.  Specifically, analyzing several electrical 
properties of circuits requires representing and processing them 
as a set of electrical connections forming a directed cyclic 
graph, e.g. performing nodal analysis with Kirchhoff laws.  
The ABDIEL metamodel is not amenable to this 
representation, as it doesn’t consider internal part wiring, and 
does not intrinsically accommodates concepts such as net 
interconnection (the fact that all joints connected to same-name 
nets are interconnected among them) and concrete pin 
connections between ports; these concepts would need to be 
programmatically implemented on top of the circuit model. 



To illustrate these complexities with an example, consider 
the case of polarity check, e.g. ensuring that an LED’s positive 
(anode) pin is not connected to a negative terminal.  If the LED 
is connected in series with a current-limiting resistor (the de 
facto method of ensuring the LED doesn’t allow excessive 
current through it and burns out), a naïve analysis considering 
only pins directly connected to the LED could yield a false 
negative, since ABDIEL’s resistor pins have no polarity.  The 
tool would need to trace back (potentially recursively) all 
connections that the resistor leads to, in order to determine 
whether a negative polarity pin is part of that network.  Doing 
this would also require knowing that a resistor represents series 
impedance, with its two terminal pins connected internally, 
something not contemplated by the metamodel.  A similar 
reasoning applies to a voltage level check, which would be a 
highly desirable validation to include, but highly complex to 
implement in the tooling’s current state. 

After considering all facts, four tactics were selected for 
design validation and assistance: 

1. Find unused ports: flag for review any unconnected ports 
found in a diagram, based on the assumption that parts 
added to the diagram may have been intended to be 
connected through their ports; 

2. Check port connections: validate port connections to ensure 
both connected ports share the same protocol and are pin-
wiring-consistent, that is, that both sets of pin aliases 
match and that each alias on each port maps to a concrete 
pin of the port’s containing part; 

3. Suggest concrete UC: finds instances of a special part 
called a Generic Atmel Microcontroller, modeled as a 
superset of several Atmel microcontrollers.  The idea is 
that a designer may use this generic part where the design 
calls for a microcontroller; this tactic analyzes the parts’ 
pin and port connections to determine the concrete 
microcontrollers that satisfy the connectivity requirements 
and that may be substituted in the design2; 

4. Check polarity: under very specific conditions (because of 
the previously outlined complexities), flag for review any 
pin connections where a polarized pin can be traced to lead 
to a pin of the opposite polarity. 

The “Key Findings and Future Work” section contains 
some notes about ways in which the metamodel could be 
modified to support efficient and elegant implementation of 
some additional types of electrical validations. 

DESIGN VALIDATION AND ASSISTANCE AUTOMATION 

To implement the chosen validation and assistance tactics, 
three options were considered: OCL constraints added to the 
ABDIEL Diagram metamodel; Epsilon Validation Language 
(EVL) GMF integration [11]; and GMF popup menu action 
extensions to analyze the model using Java code.  Due to 
inconsistent results using OCL and EVL, most likely due to the 
author’s lack of experience with these tools, and lack of time to 
research issues properly, the tactics were implemented in Java. 

                                                           
2The generic Atmel microcontroller is not considered during unused port 
analysis, as by design some of its ports may go unused. 

Each tactic was implemented as an Eclipse action that 
attaches to the diagram as a whole, providing the code access 
to the Java object model created by EMF from the ABDIEL 
Diagram model being edited.  It is assumed that each action 
treats the model in a read-only fashion, and that it implements 
any required model processing independently, although 
common model querying and processing mechanisms were 
abstracted into utility classes. 

In order to provide visual feedback from the analysis 
process, Eclipse markers [12] were generated in order to 
annotate circuit diagrams with informational, warning or error 
markers or icons.  This also entailed adding Eclipse project and 
resource support to the editor.  Three of the implemented 
validations use this type of visual feedback; the “Suggest 
Concrete UC” action provides feedback via a simple pop-up 
dialog that lists potential microcontroller models3 to use in lieu 
of each generic microcontroller found. 

The resulting tool was exported into a stand-alone 
application to be distributed for assessment and evaluation 
purposes.  Exporting the tool as a GMF editor with the required 
Eclipse project, resource and problem marker views support 
was not straightforward; a detailed recollection of the reasons 
and required steps is available at [13]. 

The source code for the project is available at [14]. 

EVALUATION  

The tool was submitted to a number of electronic designers, 
in order to elicit feedback on its convenience and helpfulness 
as an auxiliary electronics design tool. 

In terms of suitability and design assistance, the tool was 
very well received; the results seem to validate that defining 
and extending an ADL for electronics design analysis can 
certainly improve the design process.  To reach a more 
conclusive verdict, substantial additional work must be carried 
out to provide support for deeper, more complex analysis and 
assistance, as well as improving usability, an area in which the 
tool’s proof-of-concept status made itself evident.  Adding new 
components to a library requires the software developers’ 
intervention, as it entails editing the ABDIEL M1 model and 
re-building the ABDIEL Diagram M2 metamodel and 
corresponding GMF editor.  When doing this, depending on 
the specific changes performed to the model, pre-existing 
diagram files can crash the editor by triggering GMF- or EMF-
specific errors that require additional development work to 
properly handle.  Despite EMF and GMF being domain-
agnostic modeling and visual editor frameworks, a certain bias 
from software modeling is evident, and navigation of the tool is 
not always obvious for electronics designers, especially when 
compared with mainstream electronics design tools such as 
Eagle, Proteus or KiCad. 

KEY FINDINGS AND FUTURE WORK 

In general, given the results of this work, the author is 
inclined to cautiously state that the initial hypothesis holds true, 

                                                           
3 “Model” here refers to real-world part number or family variant, e.g. 
ATtiny85, ATmega328, etc. 



namely, that an architecture-driven approach to electronic 
design representation provides a proper platform on which to 
develop electronic design assistance and validation 
automations.  Unforeseen technical vagaries took away 
valuable time that was planned to be put towards more rigorous 
field testing and evolution of the proof-of-concept tool; more 
such significant real world testing and evolution is needed to 
validate the hypothesis. 

Model-driven development proved to be very valuable to 
this approach, on two dimensions.  On one hand, intrinsically, 
electronics design appears very amenable to a domain 
modeling approach; electronics can be construed as a series of 
models (electrical, component-and-connector, software) that 
are precisely interrelated and provide a solid basis upon which 
to tackle orthogonal design concerns.  On the other hand, 
incidentally, the existence of tools such as the Eclipse Projects’ 
EMF, GMF and Epsilon frameworks made possible the 
development of this project under conditions that would have 
otherwise been insurmountable. 

Areas of further possible work include: 

• Declarative metamodel extensibility.  This would allow 
electronics designers to declaratively create their own 
parts, something which currently requires involvement of 
a software engineer.  This may require choosing a new 
framework to generate the visual editor, entailing 
substantial development work to duplicate GMF’s 
capabilities while allowing declarative editor extensions; 
alternatively, a much deeper understanding of GMF may 
allow creating an editor that can be declaratively re-
configured, but GMF is not intended for this and simply 
establishing the feasibility of this approach implies a 
significant development effort.  Another concern to be 
addressed is that currently, circuit diagrams containing 
parts that have been renamed or modified in the model 
cause the editor to crash; these failures would need to be 
handled cleanly 

• Integration with the rest of the electronics design process, 
including but not limited to  generation of schematic files 
to carry out detailed electrical and mechanical refinement 
of designs with external tools, and generation of skeletal 
source code to drive electronic designs.  Model to text 
(m2t) transformations [6] could provide an economical 
way to achieve this 

• Deeper electrical and electronic analysis.  As explained 
earlier, the ABDIEL Diagram model is not suitable for 
this, but a model transformation to produce an equivalent 
lower-level electrical model may allow more precise and 
efficient analysis of some desirable circuit properties, by 
modeling the circuit as a directed cyclic graph as it 
concerns voltage and current.  Another approach could be 
transforming the model to a representation that can be 
directly fed to an analog circuit simulation tool such as 
SPICE 
(http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/), 

and reading back the output of said tool into the editor in 
order to provide integrated analysis 

ACKNOWLEDGMENT 

The author would like to thank Dimitris Kolovos, Ph. D., 
lecturer at The University of York and main 
committer/maintainer of the Eclipse Epsilon Project.  Dr. 
Kolovos kindly answered questions and provided pointers 
about Epsilon usage that were highly relevant to the 
completion of this work. 

The author would also like to thank Jimmy Pol, MSc, 
adjunct lecturer of Software Architecture at INTEC, for 
patiently listening and warmly encouraging the author 
throughout the execution of the work, and for proof-reading 
and helping correct drafts of this paper. 

REFERENCES 

 
[1] Wikipedia. “Electronic Design Automation”.  [Online] Available: 

http://en.wikipedia.org/wiki/Electronic_Design_Automation  (February 
12th 2015) . 

[2] J. Delange.  “Introduction to the Architecture Analysis and Design 
Language”.  SEI Blog. [Online] Available: 
http://blog.sei.cmu.edu/post.cfm/introduction-to-the-architecture-
analysis-design-languag (February 12th 2015). 

[3] The Eclipse Foundation.  “Graphical Modeling Framework Tutorial”. 
[Online] Available:  
https://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_
1 (February 15th 2015). 

[4] D. Kolovos, L. Rose, A. García-Domínguez, R. Paige.  “The Epsilon 
Book”.  [Online] Available: http://eclipse.org/epsilon/doc/book/ 
(December 2013) 

[5] L. Bass, P. Clements, R. Kazman.  “Software Architecture in Practice”, 
3rd Ed. Boston: Addison-Wesley, 2012. 

[6] M. Brambilla, J. Cabot, M. Wimmer.  “Model-Driven Software 
Engineering in Practice”.  Morgan & Claypool, 2012. 

[7] SAE International.  “Architecture Analysis & Design Language (AADL) 
Annex Volume 2”.  SAE International Standards: AS5506/2, 2011. 

[8] The ATESST2 Consortium.  “EAST-ADL Domain Model Specification, 
version 2.1”.   [Online] Available: http://www.east-adl.info/ (2010). 

[9] R. Jiménez.  “Extending an open source, Eclipse-based AADL toolset”.  
York:University of York, 2004. 

[10] Epsilon Blog.  “Customizing a GMF editor generated by EuGENia” .  
[Online] Available: http://eclipse.org/epsilon/doc/articles/eugenia-
polishing/ (February 12th 2015). 

[11] Epsilon Blog.  “Live validation and quick-fixes in GMF-based editors 
with EVL”. [Online] Available: 
http://www.eclipse.org/epsilon/doc/articles/evl-gmf-integration/ 
(February 12th 2015). 

[12] D. Glozic, J. McAffer.  “Mark My Words.  Using markers to tell users 
about problems and tasks”. [Online] Available: 
https://www.eclipse.org/articles/Article-Mark%20My%20Words/mark-
my-words.html (April 1 2001) 

[13] R. Jiménez.  “Exporting a GMF Editor as an Eclipse Product”. [Online] 
Available: http://www.modelesis.com/?p=204 (February 12th 2015). 

[14] R. Jiménez.  Github repositories.  https://github.com/rjimenezh  

 

 

 


